Recapturing and trapping single molecules with a solid-state nanopore.

نویسندگان

  • Marc Gershow
  • J A Golovchenko
چکیده

The development of solid-state nanopores, inspired by their biological counterparts, shows great potential for the study of single macromolecules. Applications such as DNA sequencing and the exploration of protein folding require control of the dynamics of the molecule's interaction with the pore, but DNA capture by a solid-state nanopore is not well understood. By recapturing individual molecules soon after they pass through a nanopore, we reveal the mechanism by which double-stranded DNA enters the pore. The observed recapture rates and times agree with solutions of a drift-diffusion model. Electric forces draw DNA to the pore over micrometer-scale distances, and upon arrival at the pore, molecules begin translocation almost immediately. Repeated translocation of the same molecule improves measurement accuracy, offers a way to probe the chemical transformations and internal dynamics of macromolecules on sub-millisecond time and sub-micrometre length scales, and demonstrates the ability to trap, study and manipulate individual macromolecules in solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropic cages for trapping DNA near a nanopore.

Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA b...

متن کامل

Detecting single stranded DNA with a solid state nanopore.

Voltage biased solid-state nanopores are used to detect and characterize individual single stranded DNA molecules of fixed micrometer length by operating a nanopore detector at pH values greater than approximately 11.6. The distribution of observed molecular event durations and blockade currents shows that a significant fraction of the events obey a rule of constant event charge deficit (ecd) i...

متن کامل

Multiplexed ionic current sensing with glass nanopores.

We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

متن کامل

Hydrogen Peroxide Sensing Based on Inner Surfaces Modification of Solid-State Nanopore

There are many techniques for the detection of molecules. But detection of molecules through solid-state nanopore in a solution is one of the promising, high-throughput, and low-cost technology used these days. In the present investigation, a solid-state nanopore platform was fabricated for the detection of hydrogen peroxide (H2O2), which is not only a label free product but also a significant ...

متن کامل

Solid-state nanopore channels with DNA selectivity.

Solid-state nanopores have emerged as possible candidates for next-generation DNA sequencing devices. In such a device, the DNA sequence would be determined by measuring how the forces on the DNA molecules, and also the ion currents through the nanopore, change as the molecules pass through the nanopore. Unlike their biological counterparts, solid-state nanopores have the advantage that they ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature nanotechnology

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 2007